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Abstract 

The SOR iteration for solving linear systems of equations depends upon an overrelax- 
ation factor w. We show that for the standard model problem of Poisson’s equation on a 
rectangle, the optimal w and corresponding convergence rate can be rigorously obtained by 
Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes 
symmetrical. The tilted grid also gives insight into the relation between convergence rates 
of several variants. 
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1. Introduction 

Fourier analysis has been used for nearly fifty years to test the stability of time- 

dependent finite difference formulas-the “von Neumann method” [9]. More recently it 

has also become a standard tool for estimating the convergence rate of multigrid iterations 

(31. But the analysis of the more classical iteration known as successive overrelaxation- 

SOR-has been carried out by other means [5,6,10,11]. The reason is that the behavior 

of SOR, unlike the other two problems, is dominated by low-frequency modes that are 

controlled by boundary conditions. The obvious application of Fourier analysis treats 

the boundary conditions incorrectly, and leads to an incorrect prediction of the optimal 

convergence rate. 

In this note we show that if the computational grid is tilted by a certain angle in 

space and time, Fourier analysis becomes exact for the standard SOR model problem: 

the five-point discretization of Poisson’s equation on a rectangle with Dirichlet boundary 

conditions, with the variables taken in the natural (typographical) ordering. 

The SOR model problem was first analyzed by Frankel in 1950 [6]. Our approach 

leads to no quantitative results that Frankel did not have, but makes it clear why the 

eigenvectors of the SOR iteration have the form they do. This analysis is restricted to 

the rectangular model problem, so it in no way supplants the much more general theory 

of matrix iterations developed by Young in the early 1950’s [10,11]. 

In 1956 Garabedian proposed a new analysis of SOR, valid in the limit of infinitesi- 

mal mesh spacing [7]. He observed that the SOR iteration is a consistent finite difference 

approximation of a time-dependent partial differential equation, so that its rate of conver- 

gence should approximate the rate of decay of solutions to that equation. To determine 

this rate, he introduced a new timelike variable s = t + 2/2 + y/2, which reduces the 

differential equation to a canonical form that can be analyzed by Fourier methods. Our 

tilting of the grid corresponds exactly to Garabedian’s introduction of the variable s. 

Thus for the SOR model problem, the consideration of a partial differential equation is 

unnecessary, and indeed the analysis in the discrete domain has the advantage that it is 

exact rather than approximate. Garabedian’s idea, however, provides additional insight 

and is applicable to more general problems. 

Approximate Fourier analysis of SOR (on the usual grid) has been discussed previ- 

ously by Kuo [8] and Chan and Elman [4] and probably others. Our tilted grid is also 
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equivalent to the "data flow times" considered by Adams and Jordan for reasons of par- 

allelizability [l]. We thank all of these authors, and also David Young, for their advice 

and encouragement. 

2. Jacobi 

Consider the discrete Poisson problem 

1 
h2 (" j - l , k  + u j + l , h  + u j , k - 1  + u j , k + l  - 4 U .  ) = f - 1 5 j , k 5 N - l ,  

j = O , N  or k = O , N  
(1) 

j k  j k ,  

u j k  = F j k ,  

on the square [O,7r l2 ,  with h = m/N. Let &;k denote the approximation to the exact 

discrete solution u of (1) at the nth step of an iteration, with corresponding error u y k  = 

i i y k  - u j k  . 
The Jacobi iteration is an example in which Fourier analysis works straightforwardly 

[10,11]. The errors evolve according to 

Let us consider what solutions of the form uyk = g((, q)nei(ez+qv) this iteration admits if 

we ignore the boundary conditions. We obtain immediately 

g(c,q) = + eich + e-iqh + e'") = ;(cos(h + cosqh). (3) 

This is the amplification factor  f u n c t i o n  for the Jacobi iteration. The essential property 

is that it is an even function of ( and q:  

If we take as initial data the linear combination 

where ( and q are integers in the range 1 6 (, q 5 N - 1, then the homogeneous boundary 

conditions are satisfied at n = 0. By (4), it follows that g(C,q)"sin(zsinqy satisfies both 

the interior formula and the boundary conditions for all n > 0, and therefore sinczsinqy 

is an eigenvector of the Jacobi iteration with eigenvalue g((, q ) .  Since there are (N - 1)2 
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of these functions, and they are linearly independent, they consitute a basis for the set 

of all grid functions {ujk}. Therefore the asymptotic convergence factor for the Jacobi 

iteration is exactly 

- maz lL(coseh + cosnh)l. 
l<(,rl<N-l pJacobi - 

The maximum is attained with c,r) = f l  or e,r) = f ( N  - l), 

pJacobi - - cosh w 1 - :h2. 

3. SOR and Gauss-Seidel 

If we attempt the same analysis for the SOR iteration, 

the result is 

that is, 

Now, (4) no longer holds. Therefore g ( ( , q )  does not give us the eigenvalues of the SOR 
iteration. If we find and r) to maximize Is((, q)I, there is no reason to expect the resulting 

number to describe the convergence of SOR. As it turns out, this approach produces the 

correct optimal w ,  to  leading order in h, but a convergence rate that is too pessimistic by 

a factor of four [4]. 

Figure 1 shows how the situation can be rescued. Think of the SOR iteration as 

inhabiting a regular grid in two space and one time dimensions ( j ,  k ,  n ) .  Its stencil con- 

nects six points in an asymmetrical pattern, or four points in the one-dimensional case 

portrayed in the figure. Because of this asymmetry, (4) does not hold. But if we introduce 

the new “time” index 

u = 2 n + j + k ,  (9) 

the stencil becomes symmetrical. Let us look for solutions to (7) of the form 



v+2 
v + 1  

V 

n v  

Figure 1. The SOR stencil superimposed on a space-time grid (one space di- 
mension). Introduction of the “tilted” time index Y makes the stencil symmetric, 
so that Fourier analysis can be applied. The red-black labels are explained in 
Section 4. 

In the j, k, Y variables (7) becomes 

‘Y+1 w + l  (l - W)’;k + z( j-1,k + ‘;:t,k + ‘j,k-l + ‘1::1), u;22 = 

and so a suitable value for g(€, 9 )  is either root of the quadratic equation 

d€, 912 = (1 - 4 + %s€h 2 + ccWh)g(€, 9) .  (12) 

For each € and q we now have a pair of amplification factors g * ( < , q ) ,  and they satisfy 

the symmetry condition (4). Therefore for any integers €, 9 in the range 1 5 (, q 5 N - 1, 

the functions g( e, q)”sin(z sinqy are eigenmodes of the SOR iteration in the Y direction. 

To speak terms of eigenvectors, we note that SOR is a two-step formula with respect to 

v, but it can be recast as a one-step iteration ( U ” - ~ , U ” - ~ )  I+ ( Y ” , Y ~ + ~ )  with eigenvectors 

(sintz sinqy , g((, q)sin<zsinqy) and eigenvalues g(c, q ) 2 .  

It takes two steps in Y to advance one step in n. We conclude that the asymptotic 

convergence factor for SOR is exactly 

In the original j ,  k, n coordinates, the eigenmodes become 
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and the corresponding eigenvectors are 

g(c, r))j+ksincz sinqy. (14) 

This matches the results of Frankel and others derived by different means. 

All that remains is algebra. For any c,  q ,  and w 2 1, the solutions to (12) are 

(15) 
W 

Q f d m ,  CY = -(cos(h + cosqh), 
9&, 9) = 4 

and the larger of these two numbers has magnitude 

For fixed w ,  this quantity can evidently be maximized with respect to c and 9 by taking 

c = 9 = 1 (among other values) and CY = fcosh. 

The Gauss-Seidel iteration corresponds to w = 1. In this case (16) becomes 21~1 = 

cosh, so by (13) we have 

pGS = cos2h w 1 - h2. (17) 

To find the optimal overrelaxation factor for SOR, we examine the dependence of (16) 

on w with < = 9 = 1. It is readily verified that values w > 2 lead to pioR > 1, so they are 

out of the running, and we can assume 1 5  w 5 2. In this range the second line of (16) 

obviously increases with w ,  and differentiation confirms that the first line decreases with 

w.  Therefore the optimal w is the crossover value w - 1 = a2 = (!+osh)2, which reduces 

after a little work to 

w 2 - 2h. 
2 

1 + sinh Wopt = 

By (13) and (16), the corresponding convergence rate is 

1 - sinh 
1 + sinh 

w 1 - 2h. SOR - 
Popt - Wopt - 1 = 
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4. Relating various methods 

The change to tilted coordinates has the additional advantage of clarifying the re- 

lationships between convergence rates of different iterative methods. For example, it is 

well known that the Gauss-Seidel iteration is twice as fast as Jacobi, as is confirmed by 

comparing (6) and (17). The tilted coordinates provide a simple explanation of why this 

is so. Gauss-Seidel corresponds to the case w = 1 of (ll), and this is precisely the Jacobi 

iteration with respect to v. The factor of two comes from the fact that it takes two steps 

in u to advance one step in n. 

As another example, consider the SOR iteration with the grid points taken in the 

red-black or checkerboard ordering. This means that the V j k  with j + k even (red points) 

are processed before the Ujk with j + k odd (black points), and the iteration takes the 

form 
W 

vi;+’ = (1 - w ) v ? ~  + ~ ( u y - 1 , k  + t~?+~,k + u:k-l + ~ : k + ~ )  for j + k even, 

For each w ,  this method has the same convergence rate as the iteration (7) in the natural 

ordering. Young proved this algebraically by determining the eigenvalues and eigenvectors 

of the associated iteration matrices [ll]. Again, the change to tilted coordinates gives a 

more intuitive explanation, as illustrated in Figure 1 for the case of one space dimension. 

At step u we are computing only the red points, say, and at step u + l  only the black points. 

Recasting SOR as a one-step iteration ( V ” - ~ , U ” - ~ )  H ( t . ~ ~ , u ” + ~ ) ,  as in the last section, 

we obtain simply the red-black ordering. Thus Figure 1 can be viewed as depicting an 

SOR iteration either in j ,  n coordinates with the natural ordering, or in j ,  u coordinates 

with the red-black ordering. Hence these two orderings must have the same asymptotic 

convergence rate. 

The conclusions above depend on the fact that the convergence rate is independent 

of the particular initial data used, depending only on the eigenvectors. Note that we can 

switch back and forth between arbitrary data at fixed n or at  fixed Y by taking partial 

iterations over a triangular portion of the grid. In fact, writing out these partial iterations 

algebraically gives a similarity transformation relating the iteration matrices. 

In this paper we have considered just the five-point Poisson model problem, and 

presented an ‘easy way to obtain classical results with, we hope, additional insight. The 

a 
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tilted grid may also prove useful in obtaining new results. It has already been applied to 

settle a conjecture of Adams and Jordan regarding the equivalence of certain ordering9 

for the nine-point stencil [l]. These results will be reported in (21. 
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